🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

On the Connection Between the Chromatic Number of a Graph and the Number of Cycles Covering a Vertex or an Edge


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We prove several tight bounds on the chromatic number of a graph in terms of the minimum number of simple cycles covering a vertex or an edge of this graph. Namely, we prove that X(G) ≤ k in the following two cases: any edge of G is covered by less than [e(k − 1) !  − 1] simple cycles, or any vertex of G is covered by less than \( \left[\frac{ek!}{2}-\frac{k+1}{2}\right] \) simple cycles. Tight bounds on the number of simple cycles covering an edge or a vertex of a k-critical graph are also proved.

About the authors

S. L. Berlov

Physics and Mathematics Lyceum 239

Author for correspondence.
Email: sberlov@rambler.ru
Russian Federation, St.Petersburg

K. I. Tyschuk

Physics and Mathematics Lyceum 239

Email: sberlov@rambler.ru
Russian Federation, St.Petersburg

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Springer Science+Business Media, LLC, part of Springer Nature