A Discrete Nonlinear Schrödinger-Type Hierarchy, Its Finite-Dimensional Reduction Analysis, and the Numerical Integration Scheme
- Авторы: Prykarpatski A.K.1,2, Cieśliński J.L.3
-
Учреждения:
- AGH University of Science and Technology
- I. Franko State Pedagogical University
- University of Białystok
- Выпуск: Том 231, № 6 (2018)
- Страницы: 779-819
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/241235
- DOI: https://doi.org/10.1007/s10958-018-3850-9
- ID: 241235
Цитировать
Аннотация
We investigate the procedures of discretization of the integrable nonlinear Schrödinger dynamical system, well known as the Ablowitz–Ladik equation, the corresponding symplectic structures, and the finite-dimensional invariant reductions. We develop an efficient scheme of invariant reduction of the corresponding infinite system of ordinary differential equations to an equivalent finite system of ordinary differential equations with respect to the evolution parameter. We construct a finite set of recurrence algebraic regular relations that allows one to generate solutions of the discrete nonlinear Schrödinger dynamical system and discuss the related functional spaces of solutions. Finally, we analyze the Fourier-transform approach to the study of the set of solutions of the discrete nonlinear Schrödinger dynamical system and its functional-analytic aspects.
Об авторах
A. Prykarpatski
AGH University of Science and Technology; I. Franko State Pedagogical University
Автор, ответственный за переписку.
Email: pryk.anat@cybergal.com
Польша, Krakow; Drohobych
J. Cieśliński
University of Białystok
Email: pryk.anat@cybergal.com
Польша, Lipowa Str. 41, Białystok, 15-424
Дополнительные файлы
