A1-Regularity and Boundedness of Riesz Transforms in Banach Lattices of Measurable Functions


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Let X be a Banach lattice of measurable functions on ℝn × Ω having the Fatou property. We show that the boundedness of all Riesz transforms Rj in X is equivalent to the boundedness of the Hardy–Littlewood maximal operator M in both X and X′, and thus to the boundedness of all Calderón–Zygmund operators in X. We also prove a result for the case of operators between lattices: If Y ⊃ X is a Banach lattice with the Fatou property such that the maximal operator is bounded in Y ′, then the boundedness of all Riesz transforms from X to Y is equivalent to the boundedness of the maximal operator from X to Y , and thus to the boundedness of all Calderón–Zygmund operators from X to Y .

Об авторах

D. Rutsky

St.Petersburg Department of the Steklov Mathematical Institute

Автор, ответственный за переписку.
Email: rutsky@pdmi.ras.ru
Россия, St.Petersburg

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).