🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Classical Solvability of the Radial Viscous Fingering Problem in a Hele–Shaw Cell with Surface Tension


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider the one-phase problem on radial viscous fingering structures in a Hele–Shaw cell with surface tension. This problem is a nonlinear free-boundary problem for elliptic equations. Unlike the Stefan problem for the heat equation, we deal with a problem of hydrodynamic type. We establish the classical solvability of the one-phase Hele–Shaw problem with radial geometry by using the same method as that used for the Stefan problem and justifying the vanishing coefficient of the time-derivative in the parabolic equation.

About the authors

H. Tani

Keio University

Author for correspondence.
Email: tani@math.keio.ac.jp
Japan, 3-14-1 Hiyoshi, Yokohama, 223-8522

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Springer Science+Business Media, LLC, part of Springer Nature