Lattice Points in Many-Dimensional Balls


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let Pk(n) be the difference between the number of points of the integer lattice contained in the ball \( {y}_1^2+\cdots {y}_k^2\le n \) and the volume of this ball. The paper investigates the asymptotic behavior of

the sums

\( \sum_{n\le x}{P}_k(n)\kern0.5em \left(k\ge 4\right),\kern0.5em \sum_{n\le x}{P}_3^2(n),\kern0.5em \sum_{n\le x}{P}_4^2(n)\kern1em as\kern0.5em x\to +\infty . \)

About the authors

O. M. Fomenko

St.Petersburg Department of the Steklov Mathematical Institute

Author for correspondence.
Email: fomenko@pdmi.ras.ru
Russian Federation, St. Petersburg

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Springer Science+Business Media, LLC