🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

ON the p-Harmonic Robin Radius in the Euclidean Space


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For p > 1, the notion of the p-harmonic Robin radius of a domain in the space n, n ≥ 2, is introduced. In the case where the corresponding part of the boundary degenerates, the Robin–Neumann radius is considered. The monotonicity of the p-harmonic Robin radius under some deformations of a domain is proved. Some extremal decomposition problems in the Euclidean space are solved. The definitions and proofs are based on the technique of moduli of curve families. Bibliography: 23 titles.

About the authors

S. I. Kalmykov

School of Mathematical Sciences, Shanghai Jiao Tong University; Institute of Applied Mathematics of the FEB RAS

Author for correspondence.
Email: sergeykalmykov@inbox.ru
China, Shanghai; Vladivostok

E. G. Prilepkina

Far Eastern Federal University; Vladivostok Department of the Russian Customs Academy

Email: sergeykalmykov@inbox.ru
Russian Federation, Vladivostok; Vladivostok

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Springer Science+Business Media, LLC