🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Multi-Dimensional Random Walks and Integrable Phase Models


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider random multi-dimensional lattice walks bounded by a hyperplane, calling them walks over multi-dimensional simplicial lattices. We demonstrate that generating functions of these walks are dynamical correlation functions of a certain type of exactly solvable quantum phase models describing strongly correlated bosons on a chain. Walks over oriented lattices are related to the phase model with a non-Hermitian Hamiltonian, while walks over disoriented ones are related to the model with a Hermitian Hamiltonian. The calculation of the generating functions is based on the algebraic Bethe Ansatz approach to the solution of integrable models. The answers are expressed through symmetric functions. Continuous-time quantum walks bounded by a onedimensional lattice of finite length are also studied. Bibliography: 40 titles.

About the authors

N. Bogoliubov

St.Petersburg Department of Steklov Institute of Mathematics, ITMO University

Author for correspondence.
Email: bogoliubov@pdmi.ras.ru
Russian Federation, St.Petersburg

C. Malyshev

St.Petersburg Department of Steklov Institute of Mathematics, ITMO University

Author for correspondence.
Email: malyshev@pdmi.ras.ru
Russian Federation, St.Petersburg

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Springer Science+Business Media New York