On Inverse Dynamical and Spectral Problems for the Wave and Schrӧdinger Equations on Finite Trees. The Leaf Peeling Method
- Authors: Mikhaylov V.S.1,2, Nurtazina K.B.3, Avdonin S.A.4
-
Affiliations:
- St.Petersburg Department of the SteklovMathematical Institute
- St.Petersburg State University
- L.N. Gumilyov Eurasian National University
- University of Alaska Fairbanks
- Issue: Vol 224, No 1 (2017)
- Pages: 1-10
- Section: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/239464
- DOI: https://doi.org/10.1007/s10958-017-3388-2
- ID: 239464
Cite item
Abstract
Interest in inverse dynamical, spectral, and scattering problems for differential equations on graphs is motivated by possible applications to nano-electronics and quantum waveguides and by a variety of other classical and quantum applications. Recently a new effective leaf peeling method has been proposed by S. Avdonin and P. Kurasov for solving inverse problems on trees (graphs without cycles). It allows recalculating efficiently the inverse data from the original tree to smaller trees, “removing” leaves step by step up to the rooted edge. In this paper, the main step of the spectral and dynamical versions of the peeling algorithm, i.e., recalculating the inverse data for a “peeled tree” is described. Bibliography: 12 titles.
About the authors
V. S. Mikhaylov
St.Petersburg Department of the SteklovMathematical Institute; St.Petersburg State University
Email: s.avdonin@alaska.edu
Russian Federation, St.Petersburg; St.Petersburg
K. B. Nurtazina
L.N. Gumilyov Eurasian National University
Email: s.avdonin@alaska.edu
Kazakhstan, Astana
S. A. Avdonin
University of Alaska Fairbanks
Author for correspondence.
Email: s.avdonin@alaska.edu
United States, Fairbanks
Supplementary files
