🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Minimal Spanning Trees on Infinite Sets


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Minimal spanning trees on infinite vertex sets are investigated. A criterion for minimality of a spanning tree having a finite length is obtained, which generalizes the corresponding classical result for finite sets. It gives an analytic description of the set of all infinite metric spaces which a minimal spanning tree exists for. A sufficient condition for the existence of a minimal spanning tree is obtained in terms of distance achievability between elements of a partition of the metric space under consideration. In addition, a concept of a locally minimal spanning tree is introduced, several properties of such trees are described, and relations of those trees with (globally) minimal spanning trees are investigated.

About the authors

A. O. Ivanov

Moscow State University

Author for correspondence.
Email: aoiva@mech.math.msu.su
Russian Federation, Moscow

A. A. Tuzhilin

Moscow State University

Email: aoiva@mech.math.msu.su
Russian Federation, Moscow

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Springer Science+Business Media New York