🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Spectral and pseudospectral functions of various dimensions for symmetric systems


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The main object of the paper is a symmetric system JyB(t)y = ⋋∆(t)y defined on an interval Ι = [a, b) with the regular endpoint a. Let φ(⋅, λ) be a matrix solution φ(⋅, λ) of this system of an arbitrary dimension, and let \( \left( V\kern0.5em f\right)(s)={\displaystyle \underset{I}{\int }{\varphi}^{\ast}\left( t, s\right)\varDelta (t) f(t) d t} \) be the Fourier transform of the function f(⋅) ∈ LΔ2(I). We define a pseudospectral function of the system as a matrix-valued distribution function σ(·) of the dimension nσ such that V is a partial isometry from \( {L}_{\varDelta}^2(I)\kern0.5em \mathrm{t}\mathrm{o}\kern0.5em {L}^2\left(\sigma; \kern0.5em {\mathbb{C}}^{n_{\sigma}}\right) \) with minimally possible kernel. Moreover, we find the minimally possible value of nσ and parametrize all spectral and pseudospectral functions of every possible dimensions nσ by means of a Nevanlinna boundary parameter. The obtained results develop the results by Arov and Dym; Sakhnovich, Sakhnovich and Roitberg; Langer and Textorius.

About the authors

Vadim Mogilevskii

V.G. Korolenko Poltava National Pedagogical University

Author for correspondence.
Email: vadim.mogilevskii@gmail.com
Ukraine, Poltava

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Springer Science+Business Media New York