🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Typicality of Chaotic Fractal Behavior of Integral Vortices in Hamiltonian Systems with Discontinuous Right Hand Side


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this paper, we consider linear-quadratic deterministic optimal control problems where the controls take values in a two-dimensional simplex. The phase portrait of the optimal synthesis contains second-order singular extremals and exhibits modes of infinite accumulations of switchings in a finite time, so-called chattering. We prove the presence of an entirely new phenomenon, namely, the chaotic behavior of bounded pieces of optimal trajectories. We find the hyperbolic domains in the neighborhood of a homoclinic point and estimate the corresponding contraction-extension coefficients. This gives us a possibility of calculating the entropy and the Hausdorff dimension of the nonwandering set, which appears to have a Cantor-like structure as in Smale’s horseshoe. The dynamics of the system is described by a topological Markov chain. In the second part it is shown that this behavior is generic for piecewise smooth Hamiltonian systems in the vicinity of a junction of three discontinuity hyper-surface strata.

About the authors

M. I. Zelikin

M. V. Lomonosov Moscow State University

Author for correspondence.
Email: mzelikin@mtu-net.ru
Russian Federation, Moscow

L. V. Lokutsievskii

M. V. Lomonosov Moscow State University

Email: mzelikin@mtu-net.ru
Russian Federation, Moscow

R. Hildebrand

Weierstrass Institute for Applied Analysis and Stochastics

Email: mzelikin@mtu-net.ru
Germany, Berlin

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Springer Science+Business Media New York