On Convergence Rate in CLT for Smooth Distributions


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

There are obtained nonuniform estimates of the first and second order for the rate of convergence in the central limit theorem for sums of independent identically distributed random variables with bounded density and finite absolute moments of order 2+δ, where 0 < δ ≤ 1. The obtained estimates represent a sum of two terms, the first one being the Lyapunov fraction of order 2 + δ with a factor depending only on δ, and the second one decaying exponentially. The values of the factor of the Lyapunov fraction are considerably less than the known. This is an updated version of the original paper.

Об авторах

I. Shevtsova

Lomonosov Moscow State University and Institute for Informatics Problems of FRC IC RAS

Автор, ответственный за переписку.
Email: ishevtsova@cs.msu.ru
Россия, Moscow

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).