🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Discriminant and Root Separation of Integral Polynomials


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Consider a random polynomial GQ(x) = ξQ,nxn + ξQ,n − 1xn − 1 + ⋯ + ξQ,0 with independent coefficients that are uniformly distributed on 2Q+1 integer points {−Q, . . .,Q}. Denote by D(GQ) the discriminant of GQ. We show that there exists a constant Cn depending on n only such that for all Q ≥ 2, the distribution of D(GQ) can be approximated as follows: \( \underset{-\infty \le a\le b\le -\infty }{ \sup}\left|\mathrm{P}\left(a\frac{D\left({G}_Q\right)}{Q^{2n-2}}\le b\right)-{\displaystyle \underset{a}{\overset{b}{\int }}{\upvarphi}_n(x)dx}\right|\le \frac{C_n}{ \log Q}, \) where \( \varphi \)n denotes the probability density function of the discriminant of a random polynomial of degree n with independent coefficients that are uniformly distributed on [−1, 1]. Let Δ(GQ) denote the minimal distance between complex roots of GQ. As an application, we show that for any ε > 0 there exists a constant δn > 0 such that Δ(GQ) is stochastically bounded from below/above for all sufficiently large Q in the following sense: \( \mathrm{P}\left({\delta}_n<\varDelta \left({G}_Q\right)<\frac{1}{\delta_n}\right)>1-\varepsilon \). Bibliography: 14 titles.

About the authors

F. Götze

Bielefeld University

Author for correspondence.
Email: goetze@math.uni-bielefeld.de
Germany, Bielefeld

D. Zaporozhets

St. Petersburg Department of the Steklov Mathematical Institute

Email: goetze@math.uni-bielefeld.de
Russian Federation, St. Petersburg

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Springer Science+Business Media New York