An Explicit Form of the Hilbert Symbol for Polynomial Formal Groups Over a Multidimensional Local Field. I
- Authors: Vostokov S.V.1, Volkov V.1, Bondarko M.V.1
-
Affiliations:
- St. Petersburg State University
- Issue: Vol 219, No 3 (2016)
- Pages: 370-374
- Section: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/238575
- DOI: https://doi.org/10.1007/s10958-016-3112-7
- ID: 238575
Cite item
Abstract
Let K be a multidimensional local field with characteristic different from the characteristic of its residue field, c be a unit of K, and Fc(X, Y) = X +Y +cXY be a polynomial formal group, which defines the formal module Fc(\( \mathfrak{M} \)) over the maximal ideal of the ring of integers in K. Assume that K contains the group of roots of the isogeny [pm]c(X), which we denote by μFc,m. Let be the multiplicative group of Cartier curves and c be the formal analog of the module Fc(\( \mathfrak{M} \)). In the present paper, the formal symbol { ·, · }c : Kn()×c → μFc,m is constructed and its basic properties are checked. This is the first step in the construction of an explicit formula for the Hilbert symbol.
About the authors
S. V. Vostokov
St. Petersburg State University
Author for correspondence.
Email: sergei.vostokov@gmail.com
Russian Federation, St. Petersburg
V. Volkov
St. Petersburg State University
Email: sergei.vostokov@gmail.com
Russian Federation, St. Petersburg
M. V. Bondarko
St. Petersburg State University
Email: sergei.vostokov@gmail.com
Russian Federation, St. Petersburg
Supplementary files
