🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Lagrangian and Hamiltonian Duality


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We propose a setting for De Donder–Hamilton field theory in jet bundles, generalizing the usual multisymplectic formalism. Using a reformulation of Hamilton theory for the family of local Lagrangians related to a global Euler–Lagrange form, we construct a dual Hamiltonian bundle and corresponding Legendre maps, linking a Lagrangian system on a jet bundle with a canonical Hamiltonian system on the affine dual. Our approach significantly extends the family of regular variational problems that can be treated directly within a dual Hamiltonian formalism, thus avoiding the necessity to use the Dirac constraint formalism.

About the authors

O. Rossi

Department of Mathematics, Stockholm University; Department of Mathematics, Faculty of Science, University of Ostrava; Department of Mathematics and Statistics, La Trobe University

Author for correspondence.
Email: olga.rossi@osu.cz
Sweden, Stockholm; Ostrava; Melbourne

D. Saunders

Department of Mathematics, Faculty of Science, University of Ostrava

Email: olga.rossi@osu.cz
Czech Republic, Ostrava

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Springer Science+Business Media New York