🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

The local principle of large deviations for solutions of Itô stochastic equations with quick drift


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The solution of the stochastic equation X(t) = x0 + b0tsign(X(s))|X(s)|γds + w(t); where w(t) is the Wiener process, the constant b ≠ 0, and γ ∈ (0; 1]; is considered. The local principle of large deviations for the sequence of processes \( {X}_n(t)=\frac{X(nt)}{n^{\alpha }},\alpha >1/2 \), is proved. The form of the rate function is found.

About the authors

Artem V. Logachov

Novosibirsk State University, Siberia State University of Geosystems and Technologies

Author for correspondence.
Email: omboldovskaya@mail.ru
Russian Federation, Novosibirsk

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Springer Science+Business Media New York