On the Littlewood–Offord Problem
- Authors: Eliseeva Y.S.1,2, Zaitsev A.Y.3
-
Affiliations:
- St.Petersburg State University
- the Chebyshev Laboratory, St.Petersburg State University
- St.Petersburg Department of the Steklov Mathematical Institute, St. Petersburg State University
- Issue: Vol 214, No 4 (2016)
- Pages: 467-473
- Section: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/237429
- DOI: https://doi.org/10.1007/s10958-016-2790-5
- ID: 237429
Cite item
Abstract
The paper deals with studying a connection between the Littlewood–Offord problem and estimating the concentration functions of some symmetric infinitely divisible distributions. Some multivariate generalizations of Arak’s results (1980) are given. They establish a relationship of the concentration function of the sum and arithmetic structure of supports of the distributions of independent random vectors for arbitrary distributions of summands. Bibliography: 21 titles.
About the authors
Yu. S. Eliseeva
St.Petersburg State University; the Chebyshev Laboratory, St.Petersburg State University
Author for correspondence.
Email: pochta106@yandex.ru
Russian Federation, St.Petersburg
A. Yu. Zaitsev
St.Petersburg Department of the Steklov Mathematical Institute, St. Petersburg State University
Email: pochta106@yandex.ru
Russian Federation, St. Petersburg
Supplementary files
