Limit Theorems for Queuing Systems with Regenerative Doubly Stochastic Input Flow*
- Авторы: Chernavskaya E.A.1
-
Учреждения:
- Lomonosov Moscow State University
- Выпуск: Том 214, № 1 (2016)
- Страницы: 34-43
- Раздел: Article
- URL: https://journals.rcsi.science/1072-3374/article/view/237317
- DOI: https://doi.org/10.1007/s10958-016-2756-7
- ID: 237317
Цитировать
Аннотация
This article focuses on queuing systems with doubly stochastic Poisson regenerative input flow and an infinite number of servers. Service times have the heavy-tailed distribution. The analogs of the law of large numbers and the central limit theorem for the number of occupied servers are obtained. These theorems follow from results for systems with general doubly stochastic Poisson processes [1]. As examples, we consider systems in which the input flow is controlled by a semi-Markov modulated and Markov modulated processes.
Ключевые слова
Об авторах
E. Chernavskaya
Lomonosov Moscow State University
Автор, ответственный за переписку.
Email: Chernavskayaak@mail.ru
Россия, Moscow
Дополнительные файлы
