🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

On the Space of Convex Figures


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let T be the set of convex bodies in ℝk, and let T be the set of their similarity classes. If k = 2, then F is written instead of T. Ametric d on T is defined by setting d({K1}, {K2}) = inf{log(b/a)} for the classes {K1}, {K2} ∈ T of convex bodies K1 and K2, where a and b are positive reals such that there is a similarity transformation A with aA(K1) ⊂ K2 ⊂ bA(K1). Let D2 be the planar unit disk. If x > 0, then Fx denotes the set of planar convex figures K in F with d({D2}, {K}) ≥ x. In addition, the sets T and F are equipped with the usual Hausdorff metric. It is proved that if y > log(sec(π/n)) ≥ x for a certain integer n greater than 2, then no mapping Fx → Fy is SO(2)-equivariant. Let Mk denote the space of k-dimensional convex polyhedra and let Mk(n) ⊂ Mk be the space of polyhedra with at most n hyperfaces (vertices). It is proved that there are no SO(k)-equivariant continuous mappings Mk(n + k) → Mk(n). Let T s be the closed subspace of T formed by centrally symmetric bodies. Let Tx denote the closed subspace of T formed by the bodies K with d(T s, {K}) ≥ x > 0. It is proved that for each positive y there exists a positive x such that no mapping Tx → Ty is SO(k)-equivariant. Bibliography: 3 titles.

About the authors

V. V. Makeev

St. Petersburg State University

Author for correspondence.
Email: mvv57@inbox.ru
Russian Federation, St. Petersburg

N. Yu. Netsvetaev

St. Petersburg State University

Email: mvv57@inbox.ru
Russian Federation, St. Petersburg

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Springer Science+Business Media New York