The Partition Formalism and New Entropic-Information Inequalities for Real Numbers on an Example of Clebsch–Gordan Coefficients


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We discuss the procedure of different partitions in the finite set of N integer numbers and construct generic formulas for a bijective map of real numbers sy, where y = 1, 2,…, N, N = \( \underset{k=1}{\overset{n}{\varPi}}{X}_k, \) and Xk are positive integers, onto the set of numbers s(y(x1, x2,…, xn)). We give the functions used to present the bijective map, namely, y(x1, x2, …, xn) and xk(y) in an explicit form and call them the functions detecting the hidden correlations in the system. The idea to introduce and employ the notion of “hidden gates” for a single qudit is proposed. We obtain the entropic-information inequalities for an arbitrary finite set of real numbers and consider the inequalities for arbitrary Clebsch–Gordan coefficients as an example of the found relations for real numbers.

Sobre autores

Vladimir Man’ko

Lebedev Physical Institute, Russian Academy of Sciences; Moscow Institute of Physics and Technology (State University)

Email: seilov@live.ru
Rússia, Leninskii Prospect 53, Moscow, 119991; Institutskii per. 9, Dolgoprudnyi, Moscow Region, 141700

Zhanat Seilov

Moscow Institute of Physics and Technology (State University)

Autor responsável pela correspondência
Email: seilov@live.ru
Rússia, Institutskii per. 9, Dolgoprudnyi, Moscow Region, 141700

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Springer Science+Business Media New York, 2017