Synthesis, Characterization and Physicomechanical Properties of Novel Water-based Biodegradable Polyurethane Dispersion


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Novel water-based biodegradable polyurethane dispersions with an aim to develop environmentally friendly materials, including medicine, various industries, have been prepared in this study. Biodegradable ionic polyurethanes (IPU) were synthesized based on polyols from renewable resources, such as castor oil (CO), in the presence of a polyester polyol and polyethylene glycol (PEG) with hydrophilic property and 1,6-hexamethylene diisocyanate. 1,4-Butanediol and dibutyltin dilaurate, were used as a chain extender and catalyst, respectively. The comprehensive investigations of the structure and properties of five types of synthesized polyurethanes demonstrated biodegradability relationship of these polyurethanes with their structure and composition. In this research effects of different types and content of polyols on biodegradability and physico mechanical properties of prepared PUDs were investigated. The structure, properties and physico mechanical and application behavior of mentioned materials were characterized by 1H NMR, FTIR spectroscopy, thermogravimetric analysis (TG/DTG) and dynamic mechanical thermal analysis (DMTA). The adhesion properties were measured by pull off test as well. Particle size was measured by dynamic light scattering (DLS) methods. The biodegradability of prepared polyurethane dispersions was confirmed by water uptake, hydrolytic and enzymatic degradation in phosphate buffer saline (PBS) with lipase enzyme in PBS. Results showed that by the incorporation of natural components into the polymer chain, adjusting of hydrophilic and hydrolytic liability properties of soft segments and especial relevant designs, useful polyurethane can be synthesized with desirable property of biodegradability and dispersion stability. Except for one sample, other samples were decomposed totally in enzymatic media.

Sobre autores

Behrooz Ranjbarfar

Faculty of Chemistry

Email: Alavi@sci.ikiu.ac.ir
Irã, Hakimiyeh, Tehran, 1651153311

Saeed Taghvaei Ganjali

Faculty of Chemistry

Email: Alavi@sci.ikiu.ac.ir
Irã, Hakimiyeh, Tehran, 1651153311

Mir Alavi Nikje

Department of Chemistry, Faculty of Science

Autor responsável pela correspondência
Email: Alavi@sci.ikiu.ac.ir
Irã, Qazvin

Shahram Moradi

Faculty of Chemistry

Email: Alavi@sci.ikiu.ac.ir
Irã, Hakimiyeh, Tehran, 1651153311

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018