Tunable Excitation-Dependent Photoluminescences Using Energy Gap Regulating Photogenerated Electrons Injection Rate from Excited TiO2 Nanoparticles to MoS2 Nanosheets


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Control of the photogenerated electrons transfer rate from TiO2 nanoparticles to MoS2 nanosheets is an effective method for modulating the optical property of 2‒3 layers MoS2 nanosheets. In this paper, core-shell structure MoS2/polyvinyl benzyl mercaptan sub-microspheres (PS) with vertical 2‒3 layers MoS2 nanosheets on the PS surface were prepared via solvothermal process. Core-shell structure MoS2/PS microspheres show excitation-dependent photoluminescence. It is worth noting excitation- dependent photoluminescences can be tuned via a TiO2 nanoparticles doping technique. With decreasing sizes of doping TiO2 nanoparticles from 10.1 to 2.8 nm the intensities of the excitation- dependent photoluminescence (PL) were drastically enhanced approximately 1.2‒3.2 times and the average PL lifetimes are prolonged from 131 to 344 ps. The experimental results provide strong evidence with respect to control of the band energies, that is one of effective methods to accelerate photogenerated electrons transfer from excited TiO2 nanoparticles to MoS2 nanosheets for controlling the optical properties of 2‒3 layers MoS2 nanosheets.

About the authors

Qingchun Zhao

Anhui Key Laboratory of Advanced Building Materials, School of Materials & Chemical Engineering

Author for correspondence.
Email: qczhao@ahjzu.edu.cn
China, 856 South Jinzhai Road, Hefei, Anhui, 230022

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.