Neural network technique for identifying prognostic anomalies from low-frequency electromagnetic signals in the Kuril–Kamchatka region


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

In this paper, we suggest a technique for forecasting seismic events based on the very low and low frequency (VLF and LF) signals in the 10 to 50 Hz band using the neural network approach, specifically, the error back-propagation method (EBPM). In this method, the solution of the problem has two main stages: training and recognition (forecasting). The training set is constructed from the combined data, including the amplitudes and phases of the VLF/LF signals measured in the monitoring of the Kuril-Kamchatka region and the corresponding parameters of regional seismicity. Training the neural network establishes the internal relationship between the characteristic changes in the VLF/LF signals a few days before a seismic event and the corresponding level of seismicity. The trained neural network is then applied in a prognostic mode for automated detection of the anomalous changes in the signal which are associated with seismic activity exceeding the assumed threshold level. By the example of several time intervals in 2004, 2005, 2006, and 2007, we demonstrate the efficiency of the neural network approach in the short-term forecasting of earthquakes with magnitudes starting from M ≥ 5.5 from the nighttime variations in the amplitudes and phases of the LF signals on one radio path. We also discuss the results of the simultaneous analysis of the VLF/LF data measured on two partially overlapping paths aimed at revealing the correlations between the nighttime variations in the amplitude of the signal and seismic activity.

Об авторах

I. Popova

Schmidt Institute of Physics of the Earth

Автор, ответственный за переписку.
Email: ipopova@trtk.ru
Россия, ul. B. Gruzinskaya 10, Moscow, 123995

A. Rozhnoi

Schmidt Institute of Physics of the Earth

Email: ipopova@trtk.ru
Россия, ul. B. Gruzinskaya 10, Moscow, 123995

M. Solovieva

Schmidt Institute of Physics of the Earth

Email: ipopova@trtk.ru
Россия, ul. B. Gruzinskaya 10, Moscow, 123995

B. Levin

Institute of Marine Geology and Geophysics, Far Eastern Branch

Email: ipopova@trtk.ru
Россия, ul. Nauki 1b, Yuzhno-Sakhalinsk, 693022

V. Chebrov

Kamchatka Branch, Geophysical Survey

Email: ipopova@trtk.ru
Россия, bulv. Piipa 9, Petropavlovsk-Kamchatskii, 683006

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2016

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».