Effective algorithms for sourcewise approximation of geopotential fields


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

A specialized class of fast algorithms for sourcewise approximation of potential fields, which is intended for mass use in the applications associated with handling large and extralarge measurement data, is developed. Pursuing the objective of the work, we included two informal requirements in the set of the criteria to be met by our algorithms: they should have a sufficiently simple mathematical structure which is transparent for the geophysicist and they should be quite easy to program. Both these requirements are dictated by the present-day practice existing in geology, when the absence of the centralized provision of program products by the geological organizations makes the interpreter create the necessary software themselves. Among the distinguishing features of the three suggested algorithms is the fact that the dimensionality of the approximating construction is not specified a priori but is determined a posteriori. Due to this, it turned out to be helpful to combine one of these algorithms with the fast wavelet transform, which enables the dimension of the future sourcewise approximation and the amount of computing resources required for the implementation of the main algorithm to be estimated a priori. The examples of the practical application of these technologies are presented. The promising paths for the future development of the algorithms for sourcewise approximation of the potential fields are outlined.

Об авторах

P. Balk

Mining Institute, Ural Branch

Автор, ответственный за переписку.
Email: tatianabalk@mail.ru
Россия, ul. Sibirskaya 78a, Perm, 614007

A. Dolgal

Mining Institute, Ural Branch; Perm State University

Email: tatianabalk@mail.ru
Россия, ul. Sibirskaya 78a, Perm, 614007; ul. Bukireva 15, Perm, 614990

A. Pugin

Mining Institute, Ural Branch; Perm State University

Email: tatianabalk@mail.ru
Россия, ul. Sibirskaya 78a, Perm, 614007; ul. Bukireva 15, Perm, 614990

A. Michurin

Mining Institute, Ural Branch

Email: tatianabalk@mail.ru
Россия, ul. Sibirskaya 78a, Perm, 614007

A. Simanov

Mining Institute, Ural Branch

Email: tatianabalk@mail.ru
Россия, ul. Sibirskaya 78a, Perm, 614007

A. Sharkhimullin

Mining Institute, Ural Branch

Email: tatianabalk@mail.ru
Россия, ul. Sibirskaya 78a, Perm, 614007

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).