Controlling the State of Machine Tools


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Globally, manufacturers make great efforts to maintain the performance of industrial equipment. Developers and researchers are interested in automated approaches to maintaining the performance of equipment, especially at enterprises with high degrees of computerization and comprehensive information systems. In the present work, a new approach is outlined: an autonomous control system for maintaining the condition of metal-cutting machines. This approach is based on prior work in the field and permits maintenance on the basis of autonomous control of the state of machine tools. The structure of a system with the following generalized control functions is presented: decision making; and the issuing of commands on the basis of built-in resources. The formulation of control decisions employs the theory of fuzzy sets and fuzzy logic. By means of the ANFIS fuzzy network system, the autonomy of state control of the machine tool may be assessed. Criticality assessment of the condition of machine tools and their components is important in making decisions as to the setup of systems controlling the condition of equipment at enterprises, with assessment of their efficiency. In the monitoring subsystem, provision is made for assessment of the diagnostic results, prediction, and the generation of control decisions so as to prevent disruptions of machine-tool operation.

Об авторах

A. Tugengol’d

Don State Technical University

Автор, ответственный за переписку.
Email: akt0@yandex.ru
Россия, Rostov-on-Don

V. Dimitrov

Don State Technical University

Автор, ответственный за переписку.
Email: kaf-qm@donstu.ru
Россия, Rostov-on-Don

L. Borisova

Don State Technical University

Автор, ответственный за переписку.
Email: borisovalv09@mail.ru
Россия, Rostov-on-Don

R. Voloshin

Rostov Research Institute of Radio and Communications

Автор, ответственный за переписку.
Email: r.voloshin2909@gmail.com
Россия, Rostov-on-Don

M. Solomykin

Don State Technical University

Автор, ответственный за переписку.
Email: oblivion_rk@mail.ru
Россия, Rostov-on-Don

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2018

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».