Variations in Surface Concentration of Fine Particulate Matter in Central Regions of the European Part of Russia


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The model estimation is presented for the impact of interaction between anthropogenic and biogenic emissions of trace gases and aerosols on the mass concentration of the fine fraction of particulate matter (PM2.5) in the central region of the European part of Russia. The numerical study is performed with the CHIMERE chemistry transport model taking into account the formation of secondary organic aerosol from the oxidation of semivolatile organic compounds. The simulation results are in agreement with data of PM2.5 measurements at the Mosekomonitoring stations in Moscow. It is shown that the anthropogenic-biogenic interaction results in the growth of PM2.5 concentration. Its relative value varies within the analyzed region from several percent to several tens of percent and leads to the considerable (by 1.5 times) increase in the number of episodes in which average daily PM2.5 concentration exceeds the maximum permissible concentration accepted in Russia. It is found that the revealed increase in the number of such episodes is mainly caused by the accelerated formation of biogenic secondary organic aerosol in the presence of anthropogenic air pollution which accounts (on average over the region and season) for ∼60% of its surface mass concentration.

About the authors

I. B. Konovalov

Institute of Applied Physics

Email: labmuza@mail.ru
Russian Federation, ul. Ul’yanova 46, Nizhny Novgorod, 603950

I. N. Kuznetsova

Hydrometeorological Research Center of the Russian Federation

Author for correspondence.
Email: labmuza@mail.ru
Russian Federation, Bolshoi Predtechenskii per. 11-13, Moscow, 123242

D. A. L’vova

Institute of Applied Physics

Email: labmuza@mail.ru
Russian Federation, ul. Ul’yanova 46, Nizhny Novgorod, 603950

I. Yu. Shalygina

Hydrometeorological Research Center of the Russian Federation

Email: labmuza@mail.ru
Russian Federation, Bolshoi Predtechenskii per. 11-13, Moscow, 123242

M. Beekmann

Laboratoire Interuniversitaire des Systemes Atmospheriques

Email: labmuza@mail.ru
France, 61 avenue du General de Gaulle, Creteil Cedex, 94010


Copyright (c) 2019 Allerton Press, Inc.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies