Using satellite-derived Atmospheric Motion Vector (AMV) observations in the ensemble data assimilation system


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The use of global Atmospheric Motion Vectors (AMV) satellite observations in the meteorological data assimilation system based on Local Ensemble Transform Kalman Filter (LETKF) algorithm is considered. The height assignment is the most crucial error source for AMV observations. To reduce its impact, the AMV height reassignment method is implemented; it is based on the consistency coefficient bet ween the observed and the background winds. The other way to improve the analysis quality is a more accurate specification of AMV observation errors. This necessitates the use of the nondiagonal observation-error covariance matrix R in the data assimilation scheme. The first results of these studies are presented. It is demonstrated that the use of AMV observations in the data assimilation system reduces the errors of forecasts computed from the initial data of this system.

Sobre autores

V. Mizyak

Hydrometeorological Research Center of the Russian Federation

Autor responsável pela correspondência
Email: vmizyak@mecom.ru
Rússia, Bolshoi Predtechenskii per. 11-13, Moscow, 123242

A. Shlyaeva

Cooperative Institute for Research in Environmental Sciences, 216 UCB

Email: vmizyak@mecom.ru
Estados Unidos da América, Boulder, C080309

M. Tolstykh

Institute of Numerical Mathematics RAS; Hydrometeorological Research Center of the Russian Federation

Email: vmizyak@mecom.ru
Rússia, ul. Gubkina, 8, Moscow, 119333; Bolshoi Predtechenskii per. 11-13, Moscow, 123242

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2016