Determination of frequency in three-phase electric circuits with autocorrelated noise


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Ascertaining the frequencies in three-phase systems is an important element in the automation of power systems. In three-phase systems, none of the individual phases can precisely describe the entire system and its properties. Thus, for a reliable frequency assessment, information on all three phases should be considered. This paper considers a real signal that is obtained via the Clarke transform and that contains information on all of three phases. The objective of this study was to develop methods for adaptive determination of the frequency of three-phase electric circuits on the basis of identification of the parameters of the second-order autoregression. The least-squares (LS) method has become most widespread in technical applications. However, estimations of the autoregression parameters that were obtained with this method from the noise observations are biased. Using such frequency estimations reduces the reliability of power-system automation. Therefore, the application of methods for frequency assessment that allow unbiased estimations to be obtained is an urgent task. In this study, an algorithm for the frequency assessment based on the method of instrumental variables (IV) was used for the first time. It makes it possible to obtain unbiased frequency estimations for both white-noise and autocorrelated-noise interference. Different variations of the algorithms on the basis of the total least-squares (TLS) method for various classes of noise are considered. Recurrent modifications of the LS method, the method of instrumental variables, and the total leastsquares (TLS) method are analyzed, which allow one to determine the frequency in real time. A computer experiment showed that the IV and TLS methods make it possible to obtain more accurate estimations for the cases of correlated and uncorrelated noise than does the LS method. The obtained results can be used to improve the efficiency of the diagnostics and analysis of electric systems.

Об авторах

D. Ivanov

Samara State University of Transport

Автор, ответственный за переписку.
Email: journal-elektrotechnika@mail.ru
Россия, Samara, 443100

O. Katsyuba

Samara State University of Transport

Email: journal-elektrotechnika@mail.ru
Россия, Samara, 443100

B. Grigorovskiy

Samara State University of Transport

Email: journal-elektrotechnika@mail.ru
Россия, Samara, 443100

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2017

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».