Thermogravimetric Analysis of Moisture Desorption from Coal


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In coke production, the moisture content of the initial coal is an important parameter. The moisture present in the pores of coal changes the properties of the coking batch. Note also that, together with methane and/or carbon dioxide, water may form gaseous hydrates in the coal bed. In the present work, to study the state of the moisture in coal, attention focuses on eight samples of natural gas saturated to constant moisture content in an atmosphere where the relative partial pressure of water vapor is 91%. The moisture sorbed from the atmosphere has a U-shaped dependence on the metamorphic stage of the coal, with a minimum at coking coal (K coal). In similar conditions, the more mature T and A coal contains twice as much moisture as K coal, while the younger D and G coal contains about four times as much moisture. Thermogravimetric analysis of coal samples saturated to constant moisture content permits calculation of the rate of mass loss and activation energy for the evaporation of moisture in the heating of the given samples. For each coal sample, the temperature range where the evaporation of moisture may be described by a first-order Arrhenius equation is determined. The upper limit of this range is compared with the temperature corresponding to maximum rate of mass loss and also with the temperature corresponding to the maximum thermal effect.

Sobre autores

V. Smirnov

Gorbachev Kuzbass State Technical University State Technical University

Autor responsável pela correspondência
Email: smirnovvg@kuzstu.ru
Rússia, Kemerovo

A. Manakov

Nikolaev Institute of Inorganic Chemistry, Siberian Branch

Email: smirnovvg@kuzstu.ru
Rússia, Novosibirsk

V. Dyrdin

Gorbachev Kuzbass State Technical University State Technical University

Email: smirnovvg@kuzstu.ru
Rússia, Kemerovo

L. Khitsova

Institute of Coal Chemistry and Materials Science, Federal Research Center of Coal and Coal Chemistry, Siberian Branch

Email: smirnovvg@kuzstu.ru
Rússia, Kemerovo

E. Mikhaylova

Institute of Coal Chemistry and Materials Science, Federal Research Center of Coal and Coal Chemistry, Siberian Branch

Email: smirnovvg@kuzstu.ru
Rússia, Kemerovo

Z. Ismagilov

Institute of Coal Chemistry and Materials Science, Federal Research Center of Coal and Coal Chemistry, Siberian Branch

Email: smirnovvg@kuzstu.ru
Rússia, Kemerovo


Declaração de direitos autorais © Allerton Press, Inc., 2017

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies