Fabrication of the Nb–16Si Alloy Powder for Additive Technologies by Mechanical Alloying and Spheroidization in Electric-Arc Discharge Thermal Plasma


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The development of new, more refractory heat-resistant materials for gas-turbine engines is one of most important problems of modern materials science. This is associated with the fact that nickel superalloys currently used for this purpose have a lower melting point of ~1400°C, which limits their own maximal working temperature by a range of 1100–1150°C. The Ni alloys can be replaced by natural composites, in which refractory metals are a matrix, while their silicides are intermetallic hardeners. Only three “refractory metal–silicon” binary systems manifest stability to the Me5Si3 silicide, notably, Nb5Si3, Re5Si3, and W5Si3. From the viewpoint of a combination of a high melting point and a low density, the Nb5Si3 compound is optimal among other silicides. The use of alloys of the Nb–Si system in additive manufacturing machines is of considerable interest. This work presents the results of experimental investigations into the treatment of the Nb–16 at % Si powder fabricated using mechanical alloying of elemental Nb and Si powders in the thermal plasma flux. The Nb–16Si alloy powder is fabricated by the mechanical alloying of powders of pure elements in a Fritsch Pulverisette 4 planetary mill. The powder spheroidization is performed in a plasma installation based on a discharge vortex-stabilized electric-arc thermal plasma generator. Based on the results of experimental investigations, the principal possibility to perform the plasma spheroidization of particles of the Nb–16Si alloy prepared by mechanical alloying is shown. It is shown that the surface of spheroidized particles is rough and reflects the cast material structure. Three phase components Nb5Si3, Nb3Si, and Nbss having different optical contrast are revealed in microslices, which is confirmed by X-ray phase analysis.

作者简介

A. Popovich

Peter the Great St. Petersburg Polytechnic University

编辑信件的主要联系方式.
Email: popovicha@mail.ru
俄罗斯联邦, St. Petersburg, 195251

N. Razumov

Peter the Great St. Petersburg Polytechnic University

编辑信件的主要联系方式.
Email: n.razumov@onti.spbstu.ru
俄罗斯联邦, St. Petersburg, 195251

A. Grigoriev

Peter the Great St. Petersburg Polytechnic University; OAO Klimov

编辑信件的主要联系方式.
Email: klimov@klimov.ru
俄罗斯联邦, St. Petersburg, 195251; St. Petersburg, 194100

A. Samokhin

Institute of Metallurgy and Materials, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: andery.samokhin@gmail.com
俄罗斯联邦, Moscow, 119991

V. Sufiiarov

Peter the Great St. Petersburg Polytechnic University

编辑信件的主要联系方式.
Email: vadim.spbstu@yandex.ru
俄罗斯联邦, St. Petersburg, 195251

I. Goncharov

Peter the Great St. Petersburg Polytechnic University

编辑信件的主要联系方式.
Email: fm@onti.spbstu.ru
俄罗斯联邦, St. Petersburg, 195251

A. Fadeev

Institute of Metallurgy and Materials, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: fadeevandrei@gmail.com
俄罗斯联邦, Moscow, 119991

M. Sinaiskii

Institute of Metallurgy and Materials, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: sinaisky@imet.ac.ru
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2018