The minimum increment of f-divergences given total variation distances


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let (Pi, Qi), i = 0, 1, be two pairs of probability measures defined on measurable spaces (Ωi,Fi) respectively. Assume that the pair (P1, Q1) is more informative than (P0,Q0) for testing problems. This amounts to say that If (P1,Q1) ≥ If (P0,Q0), where If (·, ·) is an arbitrary f-divergence. We find a precise lower bound for the increment of f-divergences If(P1,Q1) − If(P0,Q0) provided that the total variation distances ||Q1 − P1|| and ||Q0 − P0|| are given. This optimization problem can be reduced to the case where P1 and Q1 are defined on the space consisting of four points, and P0 and Q0 are obtained from P1 and Q1 respectively by merging two of these four points. The result includes the well-known lower and upper bounds for If(P,Q) given ||Q − P||.

作者简介

A. Gushchin

Steklov Mathematical Institute of RAS

编辑信件的主要联系方式.
Email: gushchin@mi.ras.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2016