Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 25, № 1 (2016)

Article

Tikhonov–Phillips regularizations in linear models with blurred design

Golubev Y., Zimolo T.

Аннотация

The paper deals with recovering an unknown vector β ∈ ℝp based on the observations Y = + єξ and Z = X + σζ, where X is an unknown n × p matrix with np, ξ ∈ ℝp is a standard white Gaussian noise, ζ is an n × p matrix with i.i.d. standard Gaussian entries, and є, σ ∈ ℝ+ are known noise levels. It is assumed that X has a large condition number and p is large. Therefore, in order to estimate β, the simple Tikhonov–Phillips regularization (ridge regression) with a data-driven regularization parameter is used. For this estimation method, we study the effect of noise σζ on the quality of recovering using concentration inequalities for the prediction error.

Mathematical Methods of Statistics. 2016;25(1):1-25
pages 1-25 views

Structural adaptive deconvolution under \({\mathbb{L}_p}\)-losses

Rebelles G.

Аннотация

In this paper, we address the problem of estimating a multidimensional density f by using indirect observations from the statistical model Y = X + ε. Here, ε is a measurement error independent of the random vector X of interest and having a known density with respect to Lebesgue measure. Our aim is to obtain optimal accuracy of estimation under \({\mathbb{L}_p}\)-losses when the error ε has a characteristic function with a polynomial decay. To achieve this goal, we first construct a kernel estimator of f which is fully data driven. Then, we derive for it an oracle inequality under very mild assumptions on the characteristic function of the error ε. As a consequence, we getminimax adaptive upper bounds over a large scale of anisotropic Nikolskii classes and we prove that our estimator is asymptotically rate optimal when p ∈ [2,+∞]. Furthermore, our estimation procedure adapts automatically to the possible independence structure of f and this allows us to improve significantly the accuracy of estimation.

Mathematical Methods of Statistics. 2016;25(1):26-53
pages 26-53 views

Efficiency of exponentiality tests based on a special property of exponential distribution

Nikitin Y., Volkova K.

Аннотация

New goodness-of-fit tests for exponentiality based on a particular property of exponential law are constructed. Test statistics are functionals of U-empirical processes. The first of these statistics is of integral type, the second one is a Kolmogorov type statistic.We show that the kernels corresponding to our statistics are nondegenerate. The limiting distributions and large deviations of new statistics under the null hypothesis are described. Their local Bahadur efficiency for various parametric alternatives is calculated and is comparedwith simulated powers of new tests. Conditions of local optimality of new statistics in Bahadur sense are discussed and examples of “most favorable” alternatives are given. New tests are applied to reject the hypothesis of exponentiality for the length of reigns of Roman emperors which was intensively discussed in recent years.

Mathematical Methods of Statistics. 2016;25(1):54-66
pages 54-66 views

Extremal problems for hypotheses testing with set-valued decisions

Savelov M.

Аннотация

We consider a class of extremal problems for multiple hypothesis testing with set-valued decisions and given total variation distances between hypotheses. The quality of a test is measured by an arbitrary piecewise linear continuous function of the error probabilities. We show that the extremal value of the test quality may be found as a solution of some linear programming problem, so the original infinite-dimensional problem is reduced to a certain finite-dimensional one.

Mathematical Methods of Statistics. 2016;25(1):67-77
pages 67-77 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».