Asymptotic Theory for Longitudinal Data with Missing Responses Adjusted by Inverse Probability Weights


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this article, we propose a new method for analyzing longitudinal data which contain responses that are missing at random. This method consists in solving the generalized estimating equation (GEE) of [8] in which the incomplete responses are replaced by values adjusted using the inverse probability weights proposed in [17]. We show that the root estimator is consistent and asymptotically normal, essentially under the some conditions on the marginal distribution and the surrogate correlation matrix as those presented in [15] in the case of complete data, and under minimal assumptions on the missingness probabilities. This method is applied to a real-life data set taken from [13], which examines the incidence of respiratory disease in a sample of 250 pre-school age Indonesian children which were examined every 3 months for 18 months, using as covariates the age, gender, and vitamin A deficiency.

Авторлар туралы

R. Balan

Dept. Math. and Statist.

Хат алмасуға жауапты Автор.
Email: rbalan@uottawa.ca
Канада, Ottawa

D. Jankovic

Dept. Math. and Statist.

Хат алмасуға жауапты Автор.
Email: djank090@uottawa.ca
Канада, Ottawa

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Allerton Press, Inc., 2019