Graphene oxide supported tin dioxide: synthetic approaches and electrochemical characterization as anodes for lithium- and sodium-ion batteries


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The review addresses synthetic approaches to composite materials based on graphene oxide and nano tin dioxide and their electrochemical properties as anodes for lithium- and sodiumion batteries. The introduction of a carbon matrix into the composite material improves the electrochemical characteristics of the anodes. In most methods, the synthesis of graphene oxide–tin dioxide composites is based on the use of tin(II,IV) chlorides as the starting compounds, and the most efficient electrode materials were obtained by the hydrothermal or solvothermal routes. Thermal processing is much more economic than the gas phase deposition protocols but requires heating of a large volume of dilute tin oxide dispersions in an autoclave. Mechanochemistry (ball milling) is also economically unfavorable for the synthesis of composite materials. In addition, large volumes of acidic wastes that should be neutralized and safely discarded are formed when tin chlorides are used. An alternative environmentally friendly technique based on the use of aqueous peroxide solutions can be applied for the production of efficient anode materials based on graphene oxide and tin dioxide. This process does not involve acidic wastes, uses hydrogen peroxide and ethanol as reagents, and accomplishes film deposition (coating) at room temperature. Final thermal treatment is required only for the active material, which minimizes energy expenses and equipment costs.

作者简介

A. Medvedev

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: prikhman@gmail.com
俄罗斯联邦, 31 Leninskii prosp., Moscow, 119991

A. Mikhaylov

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: prikhman@gmail.com
俄罗斯联邦, 31 Leninskii prosp., Moscow, 119991

T. Tripol´skaya

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

Email: prikhman@gmail.com
俄罗斯联邦, 31 Leninskii prosp., Moscow, 119991

P. Prikhodchenko

N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: prikhman@gmail.com
俄罗斯联邦, 31 Leninskii prosp., Moscow, 119991


版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018
##common.cookie##