Interface effects and relaxation processes in nanocomposites based on CdSe/ZnS semiconductor quantum dots and porphyrin molecules
- Авторлар: Zenkevich E.I.1, von Borczyskowski C.2
-
Мекемелер:
- National Technical University of Belarus
- Institut für Physik, Technische Universität Chemnitz
- Шығарылым: Том 67, № 7 (2018)
- Беттер: 1220-1230
- Бөлім: Article
- URL: https://journals.rcsi.science/1066-5285/article/view/242693
- DOI: https://doi.org/10.1007/s11172-018-2205-5
- ID: 242693
Дәйексөз келтіру
Аннотация
Controllable self-assembly and properties of nanocomposites based on CdSe/ZnS semiconductor quantum dots (QDs) and tetrapyridylporphyrin molecules (H2P) as well as the dynamics of relaxation processes in these systems were studied for solutions and single nanoobjects in the temperature range of 77–295 K. It was proved that the formation of surface states of different nature is crucial to nonradiative relaxation of exciton excitation in QDs. The efficiency of QD→Н2Р energy transfer was shown to be at most 10–15%. Regularities of photoluminescence (PL) quenching for QDs in nanocomposites in solutions of different polarity correlate with the dependences of PL blinking for single QDs. A scheme was proposed of excited states and main relaxation channels of exciton excitation energy in semiconductor QDs and QD–Н2Р nanocomposites.
Авторлар туралы
E. Zenkevich
National Technical University of Belarus
Хат алмасуға жауапты Автор.
Email: zenkev@tut.by
Белоруссия, 65 Prospect Nezavisimosti, Minsk, 220013
C. von Borczyskowski
Institut für Physik, Technische Universität Chemnitz
Email: zenkev@tut.by
Германия, Reichenhainer Str. 70, Chemnitz, 09126
Қосымша файлдар
