The Effect of the Mode of Gas Preionization on the Parameters of Runaway Electrons in High-Pressure Discharges


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The results of theoretical modeling of the process of formation of a nanosecond discharge in a coaxial discharge gap filled with a high-pressure gas are presented. Two cardinally different evolution scenarios of the nanosecond discharge are addressed: A) in a uniformly volume pre-ionized gas medium and B) in a strongly spatially-nonuniform initially-ionized region near the cathode with a small curvature radius. Relying on the minimal mathematical model of a high-voltage discharge and the description of the physical kinetics of runaway electrons, it is shown using the Boltzmann kinetic equation that the amplitude and duration of a current pulse of runaway electrons and their energy spectrum strongly depend on the mode of gas preionization in the gap. In particular, the other conditions being equal, near-cathode initiation gives rise to the generation of a large group of low-energy runaway electrons within the late current-switching stage. The volume-homogeneous gas preionization can reduce the number of fast electrons by nearly two orders of magnitude compared to the regime without preionization.

Об авторах

V. Kozhevnikov

National Research Tomsk State University; Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences

Автор, ответственный за переписку.
Email: vasily.y.kozhevnikov@ieee.org
Россия, Tomsk; Tomsk

A. Kozyrev

National Research Tomsk State University; Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences

Email: vasily.y.kozhevnikov@ieee.org
Россия, Tomsk; Tomsk

N. Semeniuk

National Research Tomsk State University; Institute of High Current Electronics of the Siberian Branch of the Russian Academy of Sciences

Email: vasily.y.kozhevnikov@ieee.org
Россия, Tomsk; Tomsk

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).