On the Finiteness of Hyperelliptic Fields with Special Properties and Periodic Expansion of √f


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We prove the finiteness of the set of square-free polynomials fk[x] of odd degree distinct from 11 considered up to a natural equivalence relation for which the continued fraction expansion of the irrationality \(\sqrt {f\left( x \right)} \) in k((x)) is periodic and the corresponding hyperelliptic field k(x)(√f) contains an S-unit of degree 11. Moreover, it was proved for k = ℚ that there are no polynomials of odd degree distinct from 9 and 11 satisfying the conditions mentioned above.

作者简介

V. Platonov

Scientific Research Institute for System Analysis

编辑信件的主要联系方式.
Email: platonov@niisi.ras.ru
俄罗斯联邦, Moscow, 117218

V. Zhgoon

Scientific Research Institute for System Analysis

Email: platonov@niisi.ras.ru
俄罗斯联邦, Moscow, 117218

M. Petrunin

Scientific Research Institute for System Analysis

Email: platonov@niisi.ras.ru
俄罗斯联邦, Moscow, 117218

Yu. Shteinikov

Scientific Research Institute for System Analysis

Email: platonov@niisi.ras.ru
俄罗斯联邦, Moscow, 117218

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018