Axiomatizing Provable n-Provability
- 作者: Kolmakov E.A.1, Beklemishev L.D.1
-
隶属关系:
- Steklov Mathematical Institute
- 期: 卷 98, 编号 3 (2018)
- 页面: 582-585
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225587
- DOI: https://doi.org/10.1134/S1064562418070153
- ID: 225587
如何引用文章
详细
The set of all formulas whose n-provability in a given arithmetical theory S is provable in another arithmetical theory T is a recursively enumerable extension of S. We prove that such extensions can be naturally axiomatized in terms of transfinite progressions of iterated local reflection schemata over S. Specifically, the set of all provably 1-provable sentences in Peano arithmetic PA can be axiomatized by an ε0-times iterated local reflection schema over PA. The resulting characterizations provide additional information on the proof-theoretic strength of these theories and on the complexity of their axiomatization.
作者简介
E. Kolmakov
Steklov Mathematical Institute
编辑信件的主要联系方式.
Email: kolmakov-ea@yandex.ru
俄罗斯联邦, Moscow, 119991
L. Beklemishev
Steklov Mathematical Institute
Email: kolmakov-ea@yandex.ru
俄罗斯联邦, Moscow, 119991
补充文件
