Optimization of Randomized Monte Carlo Algorithms for Solving Problems with Random Parameters


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Randomized Monte Carlo algorithms intended for statistical kernel estimation of the averaged solution to a problem with random baseline parameters are optimized. For this purpose, a criterion for the complexity of a functional Monte Carlo estimate is formulated. The algorithms involve a splitting method in which, for each realization of the parameters, a certain number of trajectories of the corresponding baseline process are constructed.

作者简介

G. Mikhailov

Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch; Novosibirsk State University

编辑信件的主要联系方式.
Email: gam@sscc.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018