Fejér Sums for Periodic Measures and the von Neumann Ergodic Theorem


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The Fejér sums of periodic measures and the norms of the deviations from the limit in the von Neumann ergodic theorem are calculated, in fact, using the same formulas (by integrating the Fejér kernels), so this ergodic theorem is, in fact, a statement about the asymptotics of the growth of the Fejér sums at zero for the spectral measure of the corresponding dynamical system. As a result, well-known estimates for the rates of convergence in the von Neumann ergodic theorem can be restated as estimates of the Fejér sums at the point for periodic measures. For example, natural criteria for the polynomial growth and polynomial decrease in these sums can be obtained. On the contrary, available in the literature, numerous estimates for the deviations of Fejér sums at a point can be used to obtain new estimates for the rate of convergence in this ergodic theorem.

作者简介

A. Kachurovskii

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

编辑信件的主要联系方式.
Email: agk@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090

I. Podvigin

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

Email: agk@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018