Fejér Sums for Periodic Measures and the von Neumann Ergodic Theorem
- 作者: Kachurovskii A.G.1,2, Podvigin I.V.1,2
-
隶属关系:
- Sobolev Institute of Mathematics, Siberian Branch
- Novosibirsk State University
- 期: 卷 98, 编号 1 (2018)
- 页面: 344-347
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225530
- DOI: https://doi.org/10.1134/S1064562418050149
- ID: 225530
如何引用文章
详细
The Fejér sums of periodic measures and the norms of the deviations from the limit in the von Neumann ergodic theorem are calculated, in fact, using the same formulas (by integrating the Fejér kernels), so this ergodic theorem is, in fact, a statement about the asymptotics of the growth of the Fejér sums at zero for the spectral measure of the corresponding dynamical system. As a result, well-known estimates for the rates of convergence in the von Neumann ergodic theorem can be restated as estimates of the Fejér sums at the point for periodic measures. For example, natural criteria for the polynomial growth and polynomial decrease in these sums can be obtained. On the contrary, available in the literature, numerous estimates for the deviations of Fejér sums at a point can be used to obtain new estimates for the rate of convergence in this ergodic theorem.
作者简介
A. Kachurovskii
Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University
编辑信件的主要联系方式.
Email: agk@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090
I. Podvigin
Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University
Email: agk@math.nsc.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090
补充文件
