Strict Embeddings of Rearrangement Invariant Spaces


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A Banach space E of measurable functions on [0,1] is called rearrangement invariant if E is a Banach lattice and equimeasurable functions have identical norms. The canonical inclusion EF of two rearrangement invariant spaces is said to be strict if functions from the unit ball of E have absolutely equicontinuous norms in F. Necessary and sufficient conditions for the strictness of canonical inclusion for Orlicz, Lorentz, and Marcinkiewicz spaces are obtained, and the relations of this concept to the disjoint strict singularity are studied.

作者简介

S. Astashkin

Samara University

编辑信件的主要联系方式.
Email: astash56@mail.ru
俄罗斯联邦, Samara, 443086

E. Semenov

Voronezh State University

Email: astash56@mail.ru
俄罗斯联邦, Voronezh, 394006

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018