Strict Embeddings of Rearrangement Invariant Spaces
- Авторлар: Astashkin S.V.1, Semenov E.M.2
-
Мекемелер:
- Samara University
- Voronezh State University
- Шығарылым: Том 98, № 1 (2018)
- Беттер: 327-329
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225525
- DOI: https://doi.org/10.1134/S1064562418050095
- ID: 225525
Дәйексөз келтіру
Аннотация
A Banach space E of measurable functions on [0,1] is called rearrangement invariant if E is a Banach lattice and equimeasurable functions have identical norms. The canonical inclusion E ⊂ F of two rearrangement invariant spaces is said to be strict if functions from the unit ball of E have absolutely equicontinuous norms in F. Necessary and sufficient conditions for the strictness of canonical inclusion for Orlicz, Lorentz, and Marcinkiewicz spaces are obtained, and the relations of this concept to the disjoint strict singularity are studied.
Авторлар туралы
S. Astashkin
Samara University
Хат алмасуға жауапты Автор.
Email: astash56@mail.ru
Ресей, Samara, 443086
E. Semenov
Voronezh State University
Email: astash56@mail.ru
Ресей, Voronezh, 394006
Қосымша файлдар
