A Two-Stage Method for Constructing Linear Regressions Using Optimal Convex Combinations


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Multilevel learning systems have become more popular in pattern recognition and regression analysis. In this paper, a two-level method for constructing a multidimensional regression model is considered, in which a family of optimal convex combinations of simple one-dimensional least-square regressions is generated at the first level. The second level of the proposed learning system is given by an elastic net. Experimental verification presented demonstrate the efficiency of the proposed regression estimation method as applied to problems with a small amount of data.

作者简介

O. Senko

Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control”

Email: dalex@ccas.ru
俄罗斯联邦, Moscow, 119333

A. Dokukin

Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control”

编辑信件的主要联系方式.
Email: dalex@ccas.ru
俄罗斯联邦, Moscow, 119333

N. Kiselyova

Baikov Institute of Metallurgy and Materials Science

Email: dalex@ccas.ru
俄罗斯联邦, Moscow, 119991

N. Khomutov

Dorodnicyn Computing Center, Federal Research Center “Computer Science and Control”

Email: dalex@ccas.ru
俄罗斯联邦, Moscow, 119333

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2018