On spectral-like resolution properties of fourth-order accurate symmetric bicompact schemes
- Авторы: Rogov B.V.1,2, Bragin M.D.2
-
Учреждения:
- Keldysh Institute of Applied Mathematics
- Moscow Institute of Physics and Technology (State University)
- Выпуск: Том 96, № 1 (2017)
- Страницы: 339-343
- Раздел: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225211
- DOI: https://doi.org/10.1134/S1064562417040081
- ID: 225211
Цитировать
Аннотация
A dispersion analysis is conducted for bicompact schemes of fourth-order accuracy in space, namely, for a semidiscrete scheme and a second-order accurate scheme in time. It is shown that their numerical group velocity is positive for all dimensionless wavenumbers. It is proved that the dispersion properties of the bicompact schemes are preserved on highly nonuniform meshes. A comparison reveals that the fourth-order bicompact schemes have a higher spectral resolution than not only other same-order compact schemes, but also some sixth-order ones. Two numerical examples are presented that demonstrate the ability of the bicompact schemes to adequately simulate wave propagation on highly nonuniform meshes over long time intervals.
Об авторах
B. Rogov
Keldysh Institute of Applied Mathematics; Moscow Institute of Physics and Technology (State University)
Автор, ответственный за переписку.
Email: rogov.boris@gmail.com
Россия, Moscow, 125047; Dolgoprudnyi, Moscow oblast, 141700
M. Bragin
Moscow Institute of Physics and Technology (State University)
Email: rogov.boris@gmail.com
Россия, Dolgoprudnyi, Moscow oblast, 141700
Дополнительные файлы
