A fast direct algorithm for implementing a high-order finite element method on rectangles as applied to boundary value problems for the Poisson equation


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Fast direct and inverse algorithms for expansion in terms of eigenvectors of one-dimensional eigenvalue problems for a high-order finite element method (FEM) are proposed based on the fast discrete Fourier transform. They generalize logarithmically optimal Fourier algorithms for solving boundary value problems for Poisson-type equations on rectangular meshes to high-order FEM. The algorithms can be extended to the multidimensional case and can be applied to nonstationary problems.

作者简介

A. Zlotnik

National Research University Higher School of Economics

编辑信件的主要联系方式.
Email: azlotnik2007@mail.ru
俄罗斯联邦, Moscow

I. Zlotnik

Settlement Depository Company

Email: azlotnik2007@mail.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017