A fast direct algorithm for implementing a high-order finite element method on rectangles as applied to boundary value problems for the Poisson equation
- 作者: Zlotnik A.A.1, Zlotnik I.A.2
-
隶属关系:
- National Research University Higher School of Economics
- Settlement Depository Company
- 期: 卷 95, 编号 2 (2017)
- 页面: 129-135
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/224892
- DOI: https://doi.org/10.1134/S1064562417020089
- ID: 224892
如何引用文章
详细
Fast direct and inverse algorithms for expansion in terms of eigenvectors of one-dimensional eigenvalue problems for a high-order finite element method (FEM) are proposed based on the fast discrete Fourier transform. They generalize logarithmically optimal Fourier algorithms for solving boundary value problems for Poisson-type equations on rectangular meshes to high-order FEM. The algorithms can be extended to the multidimensional case and can be applied to nonstationary problems.
作者简介
A. Zlotnik
National Research University Higher School of Economics
编辑信件的主要联系方式.
Email: azlotnik2007@mail.ru
俄罗斯联邦, Moscow
I. Zlotnik
Settlement Depository Company
Email: azlotnik2007@mail.ru
俄罗斯联邦, Moscow
补充文件
