A fast direct algorithm for implementing a high-order finite element method on rectangles as applied to boundary value problems for the Poisson equation
- Авторлар: Zlotnik A.A.1, Zlotnik I.A.2
-
Мекемелер:
- National Research University Higher School of Economics
- Settlement Depository Company
- Шығарылым: Том 95, № 2 (2017)
- Беттер: 129-135
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/224892
- DOI: https://doi.org/10.1134/S1064562417020089
- ID: 224892
Дәйексөз келтіру
Аннотация
Fast direct and inverse algorithms for expansion in terms of eigenvectors of one-dimensional eigenvalue problems for a high-order finite element method (FEM) are proposed based on the fast discrete Fourier transform. They generalize logarithmically optimal Fourier algorithms for solving boundary value problems for Poisson-type equations on rectangular meshes to high-order FEM. The algorithms can be extended to the multidimensional case and can be applied to nonstationary problems.
Авторлар туралы
A. Zlotnik
National Research University Higher School of Economics
Хат алмасуға жауапты Автор.
Email: azlotnik2007@mail.ru
Ресей, Moscow
I. Zlotnik
Settlement Depository Company
Email: azlotnik2007@mail.ru
Ресей, Moscow
Қосымша файлдар
