Specifying periodic words by restrictions


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Consider a periodic sequence over a finite alphabet, say ..ababab.... This sequence can be specified by prohibiting the subwords aa and bb. In the paper, the maximum period of a word that can be defined by using k restrictions is determined. A sharp exponential bound is obtained: the period of a word determined by k restrictions cannot exceed the kth Fibonacci number. Thus, the period colength is estimated. The problem is studied in the context of Gröbner bases, namely, the growth of a Gröbner basis of an ideal (the cogrowth of an algebra). The proof uses the technique of Rauzy graphs.

作者简介

P. Lavrov

Mechanics and Mathematics Faculty

编辑信件的主要联系方式.
Email: msuorange@gmail.com
俄罗斯联邦, Moscow, 119991

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016