Large deviations and rates of convergence in the Birkhoff ergodic theorem: From Hölder continuity to continuity


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

It is established that, for ergodic dynamical systems, upper estimates for the decay of large deviations of ergodic averages for (non-Hölder) continuous almost everywhere averaged functions have the same asymptotics as in the Hölder continuous case. The results are applied to obtaining the corresponding estimates for large deviations and rates of convergence in the Birkhoff ergodic theorem with non-Hölder averaged functions in certain popular chaotic billiards, such as the Bunimovich stadiums and the planar periodic Lorentz gas.

作者简介

A. Kachurovskii

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

Email: ipodvigin@math.nsc.ru
俄罗斯联邦, pr. Akademika Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

I. Podvigin

Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University

编辑信件的主要联系方式.
Email: ipodvigin@math.nsc.ru
俄罗斯联邦, pr. Akademika Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016