Large deviations and rates of convergence in the Birkhoff ergodic theorem: From Hölder continuity to continuity
- 作者: Kachurovskii A.G.1,2, Podvigin I.V.1,2
-
隶属关系:
- Sobolev Institute of Mathematics, Siberian Branch
- Novosibirsk State University
- 期: 卷 93, 编号 1 (2016)
- 页面: 6-8
- 栏目: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/223343
- DOI: https://doi.org/10.1134/S106456241601004X
- ID: 223343
如何引用文章
详细
It is established that, for ergodic dynamical systems, upper estimates for the decay of large deviations of ergodic averages for (non-Hölder) continuous almost everywhere averaged functions have the same asymptotics as in the Hölder continuous case. The results are applied to obtaining the corresponding estimates for large deviations and rates of convergence in the Birkhoff ergodic theorem with non-Hölder averaged functions in certain popular chaotic billiards, such as the Bunimovich stadiums and the planar periodic Lorentz gas.
作者简介
A. Kachurovskii
Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University
Email: ipodvigin@math.nsc.ru
俄罗斯联邦, pr. Akademika Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090
I. Podvigin
Sobolev Institute of Mathematics, Siberian Branch; Novosibirsk State University
编辑信件的主要联系方式.
Email: ipodvigin@math.nsc.ru
俄罗斯联邦, pr. Akademika Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090
补充文件
