Analogues of Korn’s Inequality on Heisenberg Groups
- Авторы: Isangulova D.V.1
-
Учреждения:
- Novosibirsk State University
- Выпуск: Том 99, № 2 (2019)
- Страницы: 181-184
- Раздел: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225653
- DOI: https://doi.org/10.1134/S1064562419020248
- ID: 225653
Цитировать
Аннотация
Two analogues of Korn’s inequality on Heisenberg groups are constructed. First, the norm of the horizontal differential is estimated in terms of its symmetric part. Second, Korn’s inequality is treated as a coercive estimate for a differential operator whose kernel coincides with the Lie algebra of the isometry group. For this purpose, we construct a differential operator whose kernel coincides with the Lie algebra of the isometry group on Heisenberg groups and prove a coercive estimate for this operator. Additionally, a coercive estimate is proved for a differential operator whose kernel coincides with the Lie algebra of the group of conformal mappings on Heisenberg groups.
Об авторах
D. Isangulova
Novosibirsk State University
Автор, ответственный за переписку.
Email: d.isangulova@g.nsu.ru
Россия, Novosibirsk, 630090
Дополнительные файлы
