Analogues of Korn’s Inequality on Heisenberg Groups
- Авторлар: Isangulova D.V.1
-
Мекемелер:
- Novosibirsk State University
- Шығарылым: Том 99, № 2 (2019)
- Беттер: 181-184
- Бөлім: Mathematics
- URL: https://journals.rcsi.science/1064-5624/article/view/225653
- DOI: https://doi.org/10.1134/S1064562419020248
- ID: 225653
Дәйексөз келтіру
Аннотация
Two analogues of Korn’s inequality on Heisenberg groups are constructed. First, the norm of the horizontal differential is estimated in terms of its symmetric part. Second, Korn’s inequality is treated as a coercive estimate for a differential operator whose kernel coincides with the Lie algebra of the isometry group. For this purpose, we construct a differential operator whose kernel coincides with the Lie algebra of the isometry group on Heisenberg groups and prove a coercive estimate for this operator. Additionally, a coercive estimate is proved for a differential operator whose kernel coincides with the Lie algebra of the group of conformal mappings on Heisenberg groups.
Авторлар туралы
D. Isangulova
Novosibirsk State University
Хат алмасуға жауапты Автор.
Email: d.isangulova@g.nsu.ru
Ресей, Novosibirsk, 630090
Қосымша файлдар
